MySQL索引
索引是帮助 MySQL 高效获取数据的数据结构(有序)。在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查询算法,这种数据结构就是索引。
优点:
- 提高数据检索效率,降低数据库的IO成本
- 通过索引列对数据进行排序,降低数据排序的成本,降低CPU的消耗
缺点:
- 索引列也是要占用空间的
- 索引大大提高了查询效率,但降低了更新的速度,比如 INSERT、UPDATE、DELETE
索引结构
索引结构 | 描述 |
---|---|
B+Tree | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash | 底层数据结构是用哈希表实现,只有精确匹配索引列的查询才有效,不支持范围查询 |
R-Tree(空间索引) | 空间索引是 MyISAM 引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-Text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式,类似于 Lucene, Solr, ES |
索引 | InnoDB | MyISAM | Memory |
---|---|---|---|
B+Tree索引 | 支持 | 支持 | 支持 |
Hash索引 | 不支持 | 不支持 | 支持 |
R-Tree索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6版本后支持 | 支持 | 不支持 |
B-Tree
比较理想的二叉树:
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
二叉树的缺点可以用红黑树来解决:
红黑树也存在大数据量情况下,层级较深,检索速度慢的问题。
为了解决上述问题,可以使用 B-Tree 结构(多路平衡查找树)。
以一棵最大度数(max-degree,指一个节点的子节点个数)为5(5阶)的 b-tree 为例(每个节点最多存储4个key,5个指针)
如上图根节点5个指针分别对应:小于20,20-30,30-62,62-89,大于89。
演示地址:https://www.cs.usfca.edu/~galles/visualization/BTree.html
B+Tree
结构图:
演示地址:https://www.cs.usfca.edu/~galles/visualization/BPlusTree.html
与 B-Tree 的区别:
- 所有的数据都会出现在叶子节点
- 叶子节点形成一个单向链表
MySQL 索引数据结构对经典的 B+Tree 进行了优化。在原 B+Tree 的基础上,增加一个指向相邻叶子节点的链表指针,就形成了带有顺序指针的 B+Tree,提高区间访问的性能。
表空间TableSpece—》段Segment—》区Extent 1M—》页16k Page —》row 行
Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在hash表中。
如果两个(或多个)键值,映射到一个相同的槽位上,他们就产生了hash冲突(也称为hash碰撞),可以通过链表来解决。类似于C的散列查找。
特点:
- Hash索引只能用于对等比较(=、in),不支持范围查询(betwwn、>、<、…)
- 无法利用索引完成排序操作
- 查询效率高,通常只需要一次检索就可以了,效率通常要高于 B+Tree 索引
存储引擎支持:
- Memory:支持
- InnoDB:具有自适应hash功能,hash索引是存储引擎根据 B+Tree 索引在指定条件下自动构建的
面试题
- 为什么 InnoDB 存储引擎选择使用 B+Tree 索引结构?
- 相对于二叉树,层级更少,搜索效率高
- 对于 B-Tree,无论是叶子节点还是非叶子节点,都会保存数据,这样导致一页中存储的键值减少,指针也跟着减少,要同样保存大量数据,只能增加树的高度,导致性能降低
- 相对于 Hash 索引,B+Tree 支持范围匹配及排序操作
索引分类
分类 | 含义 | 特点 | 关键字 |
---|---|---|---|
主键索引 | 针对于表中主键创建的索引 | 默认自动创建,只能有一个 | PRIMARY |
唯一索引 | 避免同一个表中某数据列中的值重复 | 可以有多个 | UNIQUE |
常规索引 | 快速定位特定数据 | 可以有多个 | |
全文索引 | 全文索引查找的是文本中的关键词,而不是比较索引中的值 | 可以有多个 | FULLTEXT |
在 InnoDB 存储引擎中,根据索引的存储形式,又可以分为以下两种:
分类 | 含义 | 特点 |
---|---|---|
聚集索引(Clustered Index) | 将数据存储与索引放一块,索引结构的叶子节点保存了行数据 | 必须有,而且只有一个 |
二级索引(Secondary Index) | 将数据与索引分开存储,索引结构的叶子节点关联的是对应的主键 | 可以存在多个 |
聚集索引和二级索引的具体结构如下:
- 聚集索引的叶子节点下挂的是这一行的数据 。
- 二级索引的叶子节点下挂的是该字段值对应的主键值。
SQL语句具体的查找过程:
具体过程如下:
①. 由于是根据name字段进行查询,所以先根据name=’Arm’到name字段的二级索引中进行匹配查 找。但是在二级索引中只能查找到 Arm 对应的主键值 10。
②. 由于查询返回的数据是*,所以此时,还需要根据主键值10,到聚集索引中查找10对应的记录,最 终找到10对应的行row。
③. 最终拿到这一行的数据,直接返回即可。
回表查询: 这种先到二级索引中查找数据,找到主键值,然后再到聚集索引中根据主键值,获取数据的方式,就称之为回表查询。
聚集索引选取规则:
- 如果存在主键,主键索引就是聚集索引
- 如果不存在主键,将使用第一个唯一(UNIQUE)索引作为聚集索引
- 如果表没有主键或没有合适的唯一索引,则 InnoDB 会自动生成一个 rowid 作为隐藏的聚集索引
思考题
1. 以下 SQL 语句,哪个执行效率高?为什么?
1 | select * from user where id = 10; |
答:第一条语句,因为第二条需要回表查询,相当于两个步骤。
2. InnoDB 主键索引的 B+Tree 高度为多少?
答:假设一行数据大小为1k,一页中可以存储16行这样的数据。InnoDB 的指针占用6个字节的空间,主键假设为bigint,占用字节数为8.
高度为2可得公式:n * 8 + (n + 1) * 6 = 16 * 1024
,其中 8 表示 bigint 占用的字节数,n 表示当前节点存储的key的数量,(n + 1) 表示指针数量(比key多一个)。算出n约为1170。
如果树的高度为2,那么他能存储的数据量大概为:1171 * 16 = 18736
;
如果树的高度为3,那么他能存储的数据量大概为:1171 * 1171 * 16 = 21939856
。
另外,如果有成千上万的数据,那么就要考虑分表,涉及运维篇知识。
索引语法
创建索引:
1 | CREATE [ UNIQUE | FULLTEXT ] INDEX index_name ON table_name (index_col_name, ...); |
如果不加 CREATE 后面不加索引类型参数,则创建的是常规索引。
查看索引:
1 | SHOW INDEX FROM table_name; |
查询结果行显示方法:
1 | SHOW INDEX FROM table_name\G; |
删除索引:
1 | DROP INDEX index_name ON table_name; |
案例:
1 | -- name字段为姓名字段,该字段的值可能会重复,为该字段创建常规索引 |
SQL性能分析
SQL执行频率
查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次:
1 | -- session 是查看当前会话 ; |
Com_delete: 删除次数
Com_insert: 插入次数
Com_select: 查询次数
Com_update: 更新次数
通过上述指令,我们可以查看到当前数据库到底是以查询为主,还是以增删改为主,从而为数据库优化提供参考依据。 如果是以增删改为主,我们可以考虑不对其进行索引的优化。 如果是以查询为主,那么就要考虑对数据库的索引进行优化了。
慢查询日志
慢查询日志记录了所有执行时间超过指定参数(long_query_time,单位:秒,默认10秒)的所有 SQL语句的日志。
MySQL的慢查询日志默认没有开启,我们可以查看一下系统变量 slow_query_log。
1 | show variables like 'slow_query_log' |
如果要开启慢查询日志,需要在MySQL的配置文件(/etc/my.cnf)中配置如下信息:
1 | # 编辑文件 |
profile详情
show profiles 能够在做SQL优化时帮助我们了解时间都耗费到哪里去了。
通过have_profiling 参数,能够看到当前MySQL是否支持profile操作:
1 | SELECT @@have_profiling ; |
可以看到,当前MySQL是支持 profile操作的,但是开关是关闭的。
可以通过set语句在 session/global 级别开启profiling:
1 | SET profiling = 1; |
执行一系列的业务SQL的操作,然后通过如下指令查看指令的执行耗时:
1 | -- 查看每一条SQL的耗时基本情况 |
explain
EXPLAIN 或者 DESC命令获取 MySQL 如何执行 SELECT 语句的信息,包括在 SELECT 语句执行 过程中表如何连接和连接的顺序。
语法:
1 | -- 直接在select语句之前加上关键字 explain / desc |
Explain 执行计划中各个字段的含义:
使用规则
最左前缀法则
如果索引关联了多列(联合索引),要遵守最左前缀法则。
最左前缀法则指的是查询从索引的最左列开始,并且不跳过索引中的列。
如果跳跃某一列,索引将部分失效(后面的字段索引失效)。
联合索引中,出现范围查询(<, >),范围查询右侧的列索引失效
。可以用>=或者<=来规避索引失效问题。
索引失效情况
在索引列上进行
运算操作
,索引将失效。如:1
explain select * from tb_user where substring(phone, 10, 2) = '15';
字符串类型字段使用时,不加引号,索引将失效。如:
1
2explain select * from tb_user where phone = 17799990015; -- 索引失效
explain select * from tb_user where phone = '17799990015'; -- 索引正常此处phone是
字符串没加引号
,索引失效。模糊查询中,如果仅仅是尾部模糊匹配,索引不会是失效;如果是
头部模糊匹配
,索引失效。如:1
2explain select * from tb_user where profession like '%工程'; -- 索引失效
explain select * from tb_user where profession like '软件%'; -- 索引正常前后都有 % 也会失效。
用
or
分割开的条件,如果 or 其中一个条件的列没有索引,那么涉及的索引都不会被用到。如果 MySQL 评估使用索引比全表更慢,则不使用索引。
SQL 提示
是优化数据库的一个重要手段,简单来说,就是在SQL语句中加入一些人为的提示来达到优化操作的目的。
例如,使用索引 use:
1 | explain select * from tb_user use index(idx_user_pro) where profession="软件工程"; |
不使用哪个索引 ignore:
1 | explain select * from tb_user ignore index(idx_user_pro) where profession="软件工程"; |
必须使用哪个索引 force:
1 | explain select * from tb_user force index(idx_user_pro) where profession="软件工程"; |
use 是建议,实际使用哪个索引 MySQL 还会自己权衡运行速度去更改,force就是无论如何都强制使用该索引。
覆盖索引&回表查询
尽量使用覆盖索引(查询使用了索引,并且需要返回的列,在该索引中已经全部能找到),减少 select * 的使用。
explain 中 extra 字段含义:
using index condition
:查找使用了索引,但是需要回表查询数据using where; using index;
:查找使用了索引,但是需要的数据都在索引列中能找到,所以不需要回表查询
如果在聚集索引中直接能找到对应的行,则直接返回行数据,只需要一次查询,哪怕是select *;
如果在辅助索引中找聚集索引,如select id, name from xxx where name='xxx';
,也只需要通过辅助索引(name)查找到对应的id,返回name和name索引对应的id即可,只需要一次查询;
如果是通过辅助索引查找其他字段,则需要回表查询,如select id, name, gender from xxx where name='xxx';
所以尽量不要用
select *
,容易出现回表查询,降低效率,除非有联合索引包含了所有字段。
面试题:
一张表有四个字段(id, username, password, status),由于数据量大,需要对以下SQL语句进行优化,该如何进行才是最优方案?
1 | select id, username, password from tb_user where username='itcast'; |
解:给username和password字段建立联合索引,则不需要回表查询,直接覆盖索引。
前缀索引
当字段类型为字符串(varchar, text等)时,有时候需要索引很长的字符串,这会让索引变得很大,查询时,浪费大量的磁盘IO,影响查询效率,此时可以只将字符串的一部分前缀,建立索引,这样可以大大节约索引空间,从而提高索引效率。
语法:
1 | create index idx_xxxx on table_name(columnn(n)); |
前缀长度n:可以根据索引的选择性来决定,而选择性是指不重复的索引值(基数)和数据表的记录总数的比值,索引选择性越高则查询效率越高,唯一索引的选择性是1,这是最好的索引选择性,性能也是最好的。
求选择性公式:
1 | select count(distinct email) / count(*) from tb_user; |
show index 里面的sub_part可以看到截取的长度
前缀索引的查询流程:
当回表拿到行数据还需要对email的值进行匹配,如果匹配成功则返回数据,然后二级索引里下一项如果也匹配,则拿到数据组装返回。
单列索引&联合索引
单列索引:即一个索引只包含单个列
联合索引:即一个索引包含了多个列
在业务场景中,如果存在多个查询条件,考虑针对于查询字段建立索引时,建议建立联合索引,而非单列索引。
单列索引情况:
1 | explain select id, phone, name from tb_user where phone = '17799990010' and name = '韩信'; |
这句只会用到phone索引字段,然后回表查询name。所以优化思路是创建联合索引:
1 | create unique index idx_user_phone_name on tb_user(phone,name); |
联合索引结构:
注意:
多条件联合查询时,MySQL优化器会评估哪个字段的索引效率更高,会选择该索引完成本次查询
设计原则
- 针对于数据量较大,且查询比较频繁的表建立索引
- 针对于常作为查询条件(where)、排序(order by)、分组(group by)操作的字段建立索引
- 尽量选择区分度高的列作为索引,尽量建立唯一索引,区分度越高,使用索引的效率越高
- 如果是字符串类型的字段,字段长度较长,可以针对于字段的特点,建立前缀索引
- 尽量使用联合索引,减少单列索引,查询时,联合索引很多时候可以覆盖索引,节省存储空间,避免回表,提高查询效率
- 要控制索引的数量,索引并不是多多益善,索引越多,维护索引结构的代价就越大,会影响增删改的效率
- 如果索引列不能存储NULL值,请在创建表时使用NOT NULL约束它。当优化器知道每列是否包含NULL值时,它可以更好地确定哪个索引最有效地用于查询